
MORE CONTROL NETWORKS

Logic gates are essential in the design of networks that control many devices. In this

lesson, we will investigate and construct four examples of common control networks: (1)

a system warning a driver if one or more of the four car doors is ajar, (2) a system that

allows controlling a single light with two switches, such as those found at the top and

bottom of a staircase or at each end of a long hallway, (3) a system that controls an

outdoor yard light, sensing daylight and night, but allowing manual override, and (4) a

controlled inverter, that allows inverting a computer word (a sequence of 0/1 bits) via a

control signal.

ACTIVITY 1: Car “Door Ajar” Warning Circuit

Most cars contain a variety of warning signals on

their dashboards. One common warning tells

the driver if any one or more of the car doors is

ajar, thus signaling a risk to the safety of

passengers. One way to implement this is to

have a push-button switch on each door that is

ON when the door is properly closed. When the

door is open or ajar, then the switch is OFF.

A NAND gate provides a perfect way to

implement the “car door ajar” warning. This

gate has a truth table as follows

A B A AND B A NAND B

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

We first note from the truth table, that AND

provides an ON signal only if both inputs are ON,

whereas NAND provides an OFF signal only if

both inputs are ON. For a 2-door car, the NAND

gate would turn ON a warning signal if either or

both car doors are ajar (0 or OFF). If both doors

are properly closed (1 or ON), then the warning

signal would be OFF. So a NAND gate is the

perfect solution for this warning system.

This logic can easily be extended to such a

warning signal for a 4-door car. All we need is a

NAND gate with four inputs. For a 4-door car

when all four doors are properly closed (1 or

ON), then the warning signal would be OFF.

Otherwise, when one or more doors are ajar (0

or OFF), the warning signal would be ON.

But how do we make a four-input NAND gate?

The key to answering this question lies in noting

that a NAND gate is the output of an AND gate

that has been inverted! If we only have two-

input AND gates and NOT gates available, all we

need to do is connect three two-input AND

gates end-to-end, and then connect a NOT gate

to the output of the final AND gate in the series:

Construct this circuit with littleBits. Use buttons

to represent each of the doors. When the

button is pressed down (1 or ON), the door is

properly closed; when the button is up (0 or

OFF), the door is ajar. For the warning signal,

you could use an LED or a buzzer, for example.

ACTIVITY 2: Controlling a Single Light with Two

Switches

An interesting problem is to design a logic circuit

with two switches and a single LED. If the LED is

off, then either switch can be used to turn it on.

Alternatively, if the LED is on, then either switch

can be used to turn it off.

An analog circuit analogy is the problem of

controlling a light in a stairwell with a switch at

the top and bottom. Electricians have known

and implemented designs for such switches and

their corresponding circuits for decades. But

here we turn our attention to a digital logic

circuit design that solves this problem.

Either of two different logic gates can be used to

solve this problem—and exclusive-OR gate

(XOR) or an exclusive-NOR gate (XNOR).

The truth table for these gates is as follows:

A B A XOR B A XNOR B

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

Note that the XNOR gate is simply the output of

the XOR gate inverted. The XNOR gate is also

sometimes known as an EQUIVALENCE gate, as

the output is 1 only if both inputs are the same

(equivalent).

With either the XOR or the XNOR gate, changing

the state of either A or B will always flip the

output. This is exactly what is needed to control

a single LED with two switches.

These logic gates are symbolized as shown in

the following figure:

Note the small circle at the far right of the XNOR

gate symbol. A small circle is commonly used to

indicate that the signal is being inverted.

There is no XNOR module available with

littleBits. However, you can construct an XNOR

gate with littleBits by using an XOR module

whose output is connected to an inverter

module!

Now you are ready to construct a logic circuit

that will control a single light with two switches.

Use your choice of either the XOR or the XNOR

implementation of this circuit. It is suggested

that you use either toggle switch modules or

slide switch modules and your choice of an LED

module.

ACTIVITY 3: Outdoor Light Control System

You are interested in a system that will control

an outdoor light (and its built-in AC outlet) in

your backyard. This control system should

satisfy the following requirements:

1. Turn the light on at night and off at

dawn.

2. Have a manual override switch that

would allow the light to be off during

the night and on during the day. Off

during the night might be useful if you

are hosting a party in your back yard and

want only ambient lighting and not a

glaring yard light. On during the day

would be useful if you wanted to plug in

some yard maintenance equipment such

as a trimmer/edger.

You can use a light sensor module with the

trigger set to sense dark, and the sensitivity set

fairly high. With the light sensor set in this way,

it will output a 1 (ON) at night when it is dark,

and a 0 (OFF) during the day when it is light.

The truth table for this control system can then

be set up as follows:

Light

Sensor

Override

Switch
LIGHT

Day (0) Auto (0) OFF (0)

Day (0) Override (1) ON (1)

Night (1) Auto (0) ON (1)

Night (1) Override (1) OFF (0)

A discussion of the truth table goes like this.

The light sensor is OFF (0) during the day and

ON (1) during the night. When the override

switch is in auto (0 or OFF), then the light sensor

determines if the light is on or off. When the

override switch in ON (override), then the light

is inverted from what the light sensor indicates.

You can then observe that the truth table for

the LIGHT output is the exclusive OR (XOR) of

the light sensor and the override switch.

The logic circuit diagram for our outdoor light

control system then looks like this:

You should now be able to construct the

complete circuit using littleBits. You need to

keep in mind that the light sensor can be sensed

by the red led on the littleBits power module, so

you will want to keep the power module at least

a wire’s distance from the light sensor! You can

test your circuit in a room in which you can

easily turn the room lights on or off.

If you are interested in programming, it would

also be an instructive project to design an

Arduino sketch for this outdoor light control

system, and then test your sketch by using a

littleBits Arduino module. An earlier lesson,

entitled “Toxic Waste Control System” contains

details on the use and programming of the

Arduino module.

ACTIVITY 4: Designing a Controlled Inverter

Begin by considering the truth table for the XOR

gate:

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

First note that 0 XOR B = B, regardless of

whether B is 0 or 1. Also, note that 1 XOR B = B’

(B’ is commonly used to designate B inverted),

regardless of whether B is a logic 0 or 1. The

result of these two facts is that an XOR gate can

be used as a NOT gate by making one of its

inputs a logic 1.

In computer hardware, XOR gates can therefore

be used to invert every bit in a word (i.e., a

sequence of bits) by using one input for each of

the XOR gates as a control line. The following

figure shows such a circuit for a three-bit word:

When the control signal is 0, then the output

word XYZ is the same as the input word.

However, when the control signal is 1, then the

output word is A’B’C’, with the bits inverted.

You should now be able to construct a three-bit

controlled inverter with littleBits modules. It is

suggested that the inputs A, B, and C be

represented by button modules, the control

signal by a slide or toggle switch, and the

outputs X, Y, and Z be represented by LED

modules.

